如何实现TreeNode的平衡

avatar
作者
筋斗云
阅读量:0

要实现一个平衡的树,通常我们会使用 AVL 树或红黑树。这里我将简要介绍如何实现一个简单的 AVL 树。

AVL 树是一种自平衡二叉搜索树,它的每个节点的左子树和右子树的高度差不超过 1。为了实现一个 AVL 树,我们需要定义一个 TreeNode 类,并实现插入、删除和平衡等操作。

首先,定义一个 TreeNode 类:

class TreeNode:     def __init__(self, key):         self.key = key         self.left = None         self.right = None         self.height = 1 

接下来,实现插入操作。在插入节点时,我们需要更新节点的高度,并检查树是否平衡。如果不平衡,我们需要进行相应的旋转操作来恢复平衡。

class AVLTree:     def insert(self, root, key):         if not root:             return TreeNode(key)         elif key< root.key:             root.left = self.insert(root.left, key)         else:             root.right = self.insert(root.right, key)          root.height = 1 + max(self.get_height(root.left), self.get_height(root.right))          balance = self.get_balance(root)          # Left Left Case         if balance > 1 and key< root.left.key:             return self.right_rotate(root)          # Right Right Case         if balance < -1 and key > root.right.key:             return self.left_rotate(root)          # Left Right Case         if balance > 1 and key > root.left.key:             root.left = self.left_rotate(root.left)             return self.right_rotate(root)          # Right Left Case         if balance < -1 and key< root.right.key:             root.right = self.right_rotate(root.right)             return self.left_rotate(root)          return root      def get_height(self, root):         if not root:             return 0         return root.height      def get_balance(self, root):         if not root:             return 0         return self.get_height(root.left) - self.get_height(root.right)      def left_rotate(self, z):         y = z.right         T2 = y.left          y.left = z         z.right = T2          z.height = 1 + max(self.get_height(z.left), self.get_height(z.right))         y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))          return y      def right_rotate(self, y):         x = y.left         T2 = x.right          x.right = y         y.left = T2          y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))         x.height = 1 + max(self.get_height(x.left), self.get_height(x.right))          return x 

类似地,你可以实现删除操作,并在删除节点时检查树是否平衡。如果不平衡,进行相应的旋转操作来恢复平衡。

注意:这里给出的代码仅作为实现 AVL 树的参考,你可能需要根据自己的需求进行调整和优化。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!