阅读量:0
要在C#中加载和运行TensorRT模型,您需要使用NVIDIA TensorRT库
安装NVIDIA TensorRT库:首先,您需要从NVIDIA官方网站下载并安装适用于您的操作系统的TensorRT库。请注意,TensorRT库需要NVIDIA GPU以及相应的驱动程序和CUDA工具包。
创建C#绑定:由于TensorRT是用C++编写的,因此您需要为C#创建一个绑定。这可以通过使用P/Invoke或者C++/CLI实现。在这里,我们将使用C++/CLI创建一个简单的绑定。
加载和运行TensorRT模型:使用C#绑定加载和运行TensorRT模型。
以下是一个简单的示例,说明如何在C#中加载和运行TensorRT模型:
using System; using System.Runtime.InteropServices; namespace TensorRTExample { class Program { static void Main(string[] args) { // Load the TensorRT library IntPtr tensorrtLib = NativeMethods.LoadLibrary("nvinfer"); if (tensorrtLib == IntPtr.Zero) { Console.WriteLine("Failed to load TensorRT library."); return; } // Create an inference runtime IntPtr runtime = NativeMethods.createInferRuntime(IntPtr.Zero); if (runtime == IntPtr.Zero) { Console.WriteLine("Failed to create inference runtime."); return; } // Load the TensorRT engine from a file string engineFilePath = "path/to/your/engine/file"; IntPtr engine = NativeMethods.deserializeCudaEngine(runtime, engineFilePath, IntPtr.Zero); if (engine == IntPtr.Zero) { Console.WriteLine("Failed to deserialize CUDA engine."); return; } // Create an execution context for the engine IntPtr context = NativeMethods.createExecutionContext(engine); if (context == IntPtr.Zero) { Console.WriteLine("Failed to create execution context."); return; } // Set up input and output buffers int inputIndex = 0; int outputIndex = 1; float[] inputData = new float[1 * 3 * 224 * 224]; // Replace with your input data float[] outputData = new float[1000]; // Replace with your output data // Run inference NativeMethods.enqueue(context, 1, inputData, outputData, IntPtr.Zero); // Process the output data // ... // Clean up NativeMethods.destroyExecutionContext(context); NativeMethods.destroyCudaEngine(engine); NativeMethods.destroyInferRuntime(runtime); NativeMethods.FreeLibrary(tensorrtLib); } } internal static class NativeMethods { [DllImport("kernel32.dll")] public static extern IntPtr LoadLibrary(string dllToLoad); [DllImport("kernel32.dll")] public static extern IntPtr GetProcAddress(IntPtr hModule, string procedureName); [DllImport("kernel32.dll")] public static extern bool FreeLibrary(IntPtr hModule); [DllImport("nvinfer.dll")] public static extern IntPtr createInferRuntime(IntPtr logger); [DllImport("nvinfer.dll")] public static extern IntPtr deserializeCudaEngine(IntPtr runtime, string engineFilePath, IntPtr pluginFactory); [DllImport("nvinfer.dll")] public static extern IntPtr createExecutionContext(IntPtr engine); [DllImport("nvinfer.dll")] public static extern void destroyExecutionContext(IntPtr context); [DllImport("nvinfer.dll")] public static extern void destroyCudaEngine(IntPtr engine); [DllImport("nvinfer.dll")] public static extern void destroyInferRuntime(IntPtr runtime); [DllImport("nvinfer.dll")] public static extern bool enqueue(IntPtr context, int batchSize, float[] inputData, float[] outputData, IntPtr stream); } }
请注意,这个示例仅用于演示目的。在实际应用中,您需要根据您的需求和数据集调整输入和输出数据。