如何在C#中加载和运行TensorRT模型

avatar
作者
筋斗云
阅读量:0

要在C#中加载和运行TensorRT模型,您需要使用NVIDIA TensorRT库

  1. 安装NVIDIA TensorRT库:首先,您需要从NVIDIA官方网站下载并安装适用于您的操作系统的TensorRT库。请注意,TensorRT库需要NVIDIA GPU以及相应的驱动程序和CUDA工具包。

  2. 创建C#绑定:由于TensorRT是用C++编写的,因此您需要为C#创建一个绑定。这可以通过使用P/Invoke或者C++/CLI实现。在这里,我们将使用C++/CLI创建一个简单的绑定。

  3. 加载和运行TensorRT模型:使用C#绑定加载和运行TensorRT模型。

以下是一个简单的示例,说明如何在C#中加载和运行TensorRT模型:

using System; using System.Runtime.InteropServices;  namespace TensorRTExample {     class Program     {         static void Main(string[] args)         {             // Load the TensorRT library             IntPtr tensorrtLib = NativeMethods.LoadLibrary("nvinfer");             if (tensorrtLib == IntPtr.Zero)             {                 Console.WriteLine("Failed to load TensorRT library.");                 return;             }              // Create an inference runtime             IntPtr runtime = NativeMethods.createInferRuntime(IntPtr.Zero);             if (runtime == IntPtr.Zero)             {                 Console.WriteLine("Failed to create inference runtime.");                 return;             }              // Load the TensorRT engine from a file             string engineFilePath = "path/to/your/engine/file";             IntPtr engine = NativeMethods.deserializeCudaEngine(runtime, engineFilePath, IntPtr.Zero);             if (engine == IntPtr.Zero)             {                 Console.WriteLine("Failed to deserialize CUDA engine.");                 return;             }              // Create an execution context for the engine             IntPtr context = NativeMethods.createExecutionContext(engine);             if (context == IntPtr.Zero)             {                 Console.WriteLine("Failed to create execution context.");                 return;             }              // Set up input and output buffers             int inputIndex = 0;             int outputIndex = 1;             float[] inputData = new float[1 * 3 * 224 * 224]; // Replace with your input data             float[] outputData = new float[1000]; // Replace with your output data              // Run inference             NativeMethods.enqueue(context, 1, inputData, outputData, IntPtr.Zero);              // Process the output data             // ...              // Clean up             NativeMethods.destroyExecutionContext(context);             NativeMethods.destroyCudaEngine(engine);             NativeMethods.destroyInferRuntime(runtime);             NativeMethods.FreeLibrary(tensorrtLib);         }     }      internal static class NativeMethods     {         [DllImport("kernel32.dll")]         public static extern IntPtr LoadLibrary(string dllToLoad);          [DllImport("kernel32.dll")]         public static extern IntPtr GetProcAddress(IntPtr hModule, string procedureName);          [DllImport("kernel32.dll")]         public static extern bool FreeLibrary(IntPtr hModule);          [DllImport("nvinfer.dll")]         public static extern IntPtr createInferRuntime(IntPtr logger);          [DllImport("nvinfer.dll")]         public static extern IntPtr deserializeCudaEngine(IntPtr runtime, string engineFilePath, IntPtr pluginFactory);          [DllImport("nvinfer.dll")]         public static extern IntPtr createExecutionContext(IntPtr engine);          [DllImport("nvinfer.dll")]         public static extern void destroyExecutionContext(IntPtr context);          [DllImport("nvinfer.dll")]         public static extern void destroyCudaEngine(IntPtr engine);          [DllImport("nvinfer.dll")]         public static extern void destroyInferRuntime(IntPtr runtime);          [DllImport("nvinfer.dll")]         public static extern bool enqueue(IntPtr context, int batchSize, float[] inputData, float[] outputData, IntPtr stream);     } } 

请注意,这个示例仅用于演示目的。在实际应用中,您需要根据您的需求和数据集调整输入和输出数据。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!