MXNet中怎么使用Capsule Networks

avatar
作者
猴君
阅读量:0

在MXNet中使用Capsule Networks,可以通过CapsuleLayer和CapsuleLoss这两个API来实现。首先需要定义CapsuleLayer,然后使用CapsuleLoss来定义损失函数。

以下是一个简单的示例代码:

import mxnet as mx from mxnet.gluon import nn from mxnet import nd  class CapsuleLayer(nn.HybridBlock):     def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels, num_iterations=3, **kwargs):         super(CapsuleLayer, self).__init__(**kwargs)         self.num_route_nodes = num_route_nodes         self.num_iterations = num_iterations         with self.name_scope():             self.W = self.params.get('weight', shape=(1, num_route_nodes, num_capsules, in_channels, out_channels))      def hybrid_forward(self, F, x):         batch_size = x.shape[0]         x = x.expand_dims(axis=2).broadcast_to((batch_size, self.num_route_nodes, x.shape[1], x.shape[2]))         W = self.W.data().expand_dims(axis=0)         u_hat = F.linalg.gemm2(x, W, transpose_b=True)         u_hat_stopped = F.stop_gradient(u_hat)         b = nd.zeros((batch_size, self.num_route_nodes, self.num_capsules, 1))         for i in range(self.num_iterations):             c = F.softmax(b, axis=2)             s = F.broadcast_mul(c, u_hat)             s = F.sum(s, axis=1, keepdims=True)             v = self.squash(s)             if i < self.num_iterations - 1:                 b = b + nd.sum(u_hat_stopped * v, axis=-1, keepdims=True)         return v      def squash(self, x):         norm = nd.sum(x ** 2, axis=-1, keepdims=True)         return (norm / (1 + norm)) * (x / nd.sqrt(norm + 1e-8))  class CapsuleLoss(nn.HybridBlock):     def __init__(self, lambda_val=0.5, **kwargs):         super(CapsuleLoss, self).__init__(**kwargs)         self.lambda_val = lambda_val      def hybrid_forward(self, F, v, labels):         v_norm = nd.sqrt(nd.sum(v ** 2, axis=-1, keepdims=True))         left = labels * F.relu(0.9 - v_norm) ** 2         right = self.lambda_val * (1 - labels) * F.relu(v_norm - 0.1) ** 2         loss = F.sum(left + right, axis=-1)         return loss 

然后可以通过定义一个包含CapsuleLayer和CapsuleLoss的网络来使用Capsule Networks。需要注意的是,Capsule Networks通常用于处理视觉任务,比如图像分类或目标检测。

net = nn.Sequential() net.add(CapsuleLayer(num_capsules=10, num_route_nodes=32, in_channels=8, out_channels=16)) net.add(CapsuleLayer(num_capsules=10, num_route_nodes=32, in_channels=16, out_channels=16)) net.add(CapsuleLoss())  # 训练模型 # ... 

这样就可以在MXNet中使用Capsule Networks进行训练和预测。需要根据具体的任务和数据来调整网络结构和参数。

    广告一刻

    为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!