阅读量:0
在MXNet中使用Capsule Networks,可以通过CapsuleLayer和CapsuleLoss这两个API来实现。首先需要定义CapsuleLayer,然后使用CapsuleLoss来定义损失函数。
以下是一个简单的示例代码:
import mxnet as mx from mxnet.gluon import nn from mxnet import nd class CapsuleLayer(nn.HybridBlock): def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels, num_iterations=3, **kwargs): super(CapsuleLayer, self).__init__(**kwargs) self.num_route_nodes = num_route_nodes self.num_iterations = num_iterations with self.name_scope(): self.W = self.params.get('weight', shape=(1, num_route_nodes, num_capsules, in_channels, out_channels)) def hybrid_forward(self, F, x): batch_size = x.shape[0] x = x.expand_dims(axis=2).broadcast_to((batch_size, self.num_route_nodes, x.shape[1], x.shape[2])) W = self.W.data().expand_dims(axis=0) u_hat = F.linalg.gemm2(x, W, transpose_b=True) u_hat_stopped = F.stop_gradient(u_hat) b = nd.zeros((batch_size, self.num_route_nodes, self.num_capsules, 1)) for i in range(self.num_iterations): c = F.softmax(b, axis=2) s = F.broadcast_mul(c, u_hat) s = F.sum(s, axis=1, keepdims=True) v = self.squash(s) if i < self.num_iterations - 1: b = b + nd.sum(u_hat_stopped * v, axis=-1, keepdims=True) return v def squash(self, x): norm = nd.sum(x ** 2, axis=-1, keepdims=True) return (norm / (1 + norm)) * (x / nd.sqrt(norm + 1e-8)) class CapsuleLoss(nn.HybridBlock): def __init__(self, lambda_val=0.5, **kwargs): super(CapsuleLoss, self).__init__(**kwargs) self.lambda_val = lambda_val def hybrid_forward(self, F, v, labels): v_norm = nd.sqrt(nd.sum(v ** 2, axis=-1, keepdims=True)) left = labels * F.relu(0.9 - v_norm) ** 2 right = self.lambda_val * (1 - labels) * F.relu(v_norm - 0.1) ** 2 loss = F.sum(left + right, axis=-1) return loss
然后可以通过定义一个包含CapsuleLayer和CapsuleLoss的网络来使用Capsule Networks。需要注意的是,Capsule Networks通常用于处理视觉任务,比如图像分类或目标检测。
net = nn.Sequential() net.add(CapsuleLayer(num_capsules=10, num_route_nodes=32, in_channels=8, out_channels=16)) net.add(CapsuleLayer(num_capsules=10, num_route_nodes=32, in_channels=16, out_channels=16)) net.add(CapsuleLoss()) # 训练模型 # ...
这样就可以在MXNet中使用Capsule Networks进行训练和预测。需要根据具体的任务和数据来调整网络结构和参数。