python判断质数的方法有哪些

avatar
作者
猴君
阅读量:1

判断质数的方法有以下几种:

  1. 简单的方法是遍历从2到n-1的所有整数,判断n是否能被这些整数整除。如果n能被任何一个整数整除,则n不是质数。这种方法的时间复杂度为O(n)。
def is_prime(n):     if n < 2:         return False     for i in range(2, int(n**0.5) + 1):         if n % i == 0:             return False     return True 
  1. 优化的方法是只需要遍历从2到n的平方根的整数即可。因为如果n能被大于其平方根的整数整除,那么一定能被小于其平方根的整数整除。同样,如果n不能被小于其平方根的整数整除,那么一定不能被大于其平方根的整数整除。时间复杂度为O(sqrt(n))。
def is_prime(n):     if n < 2:         return False     for i in range(2, int(n**0.5) + 1):         if n % i == 0:             return False     return True 
  1. Sieve of Eratosthenes(埃拉托色尼筛选法)是一种筛选法,用于找出一定范围内的所有质数。具体步骤是从2开始,将所有能被2整除的数标记为非质数,然后找到下一个未被标记的数,将其作为质数,并将其倍数标记为非质数,重复这个过程直到所有数都被标记。时间复杂度为O(nloglogn)。
def sieve_of_eratosthenes(n):     primes = [True] * (n + 1)     primes[0] = primes[1] = False     p = 2     while p * p <= n:         if primes[p]:             for i in range(p * p, n + 1, p):                 primes[i] = False         p += 1     return primes 

这些方法可以根据具体情况选择使用。如果只需要判断一个数是否为质数,可以使用第一种或第二种方法。如果需要找出一定范围内的所有质数,可以使用第三种方法。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!