python玉桂狗代码怎么写

avatar
作者
筋斗云
阅读量:3

玉桂狗是一个神经网络模型,用于图像识别任务。以下是一个简单的示例代码,用于训练和测试玉桂狗模型。

import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms  # 定义玉桂狗模型 class JadeDog(nn.Module):     def __init__(self):         super(JadeDog, self).__init__()         self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)         self.relu = nn.ReLU()         self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)         self.pool = nn.MaxPool2d(kernel_size=2, stride=2)         self.fc1 = nn.Linear(64 * 8 * 8, 128)         self.fc2 = nn.Linear(128, 10)          def forward(self, x):         x = self.conv1(x)         x = self.relu(x)         x = self.pool(x)         x = self.conv2(x)         x = self.relu(x)         x = self.pool(x)         x = x.view(-1, 64 * 8 * 8)         x = self.fc1(x)         x = self.relu(x)         x = self.fc2(x)         return x  # 数据预处理和加载 transform = transforms.Compose([     transforms.RandomHorizontalFlip(),  # 随机水平翻转     transforms.ToTensor(),  # 转为张量     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化 ])  train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)  train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)  # 初始化模型和优化器 model = JadeDog() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) criterion = nn.CrossEntropyLoss()  # 训练模型 def train(model, optimizer, criterion, train_loader):     model.train()     for batch_idx, (data, target) in enumerate(train_loader):         optimizer.zero_grad()         output = model(data)         loss = criterion(output, target)         loss.backward()         optimizer.step()         if batch_idx % 100 == 0:             print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(                 epoch, batch_idx * len(data), len(train_loader.dataset),                 100. * batch_idx / len(train_loader), loss.item()))  # 测试模型 def test(model, criterion, test_loader):     model.eval()     test_loss = 0     correct = 0     with torch.no_grad():         for data, target in test_loader:             output = model(data)             test_loss += criterion(output, target).item()             pred = output.argmax(dim=1, keepdim=True)             correct += pred.eq(target.view_as(pred)).sum().item()      test_loss /= len(test_loader.dataset)     accuracy = 100. * correct / len(test_loader.dataset)     print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(         test_loss, correct, len(test_loader.dataset), accuracy))  # 开始训练和测试 for epoch in range(1, 11):     train(model, optimizer, criterion, train_loader)     test(model, criterion, test_loader) 

以上代码使用PyTorch库构建了一个简单的玉桂狗模型,并使用CIFAR-10数据集进行训练和测试。你可以根据实际需要进行修改和扩展。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!