阅读量:0
要使用Hadoop的MapReduce,您需要按照以下步骤进行操作:
定义Map函数:Map函数是将输入数据分成键值对的过程。您需要编写一个Map函数来定义输入数据如何转换成键值对。
定义Reduce函数:Reduce函数是将Map函数输出的键值对进行处理的过程。您需要编写一个Reduce函数来定义如何处理Map函数输出的键值对。
配置MapReduce作业:您需要使用Hadoop的配置文件来配置MapReduce作业的各种参数,如输入路径、输出路径、Map函数、Reduce函数等。
运行MapReduce作业:您可以使用Hadoop的命令行工具或编程接口来提交并运行MapReduce作业。
下面是一个使用Hadoop MapReduce的示例代码:
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; import java.util.StringTokenizer; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
这个示例代码是一个简单的单词计数程序。它将输入文件中的每个单词拆分成键值对,然后统计每个单词出现的次数。最后,它将输出每个单词和对应的出现次数。
您可以使用Hadoop的命令行工具将该代码打包成一个JAR文件,并使用以下命令来提交并运行MapReduce作业:
hadoop jar WordCount.jar WordCount input output
其中,WordCount
是您打包的JAR文件名,input
是输入文件路径,output
是输出文件路径。
注意:在运行MapReduce作业之前,您需要安装和配置Hadoop集群,并确保集群处于运行状态。