spark怎么读取kafka的数据

avatar
作者
筋斗云
阅读量:1

在Spark中读取Kafka的数据,可以使用Spark的官方Kafka集成库,即Spark Streaming Kafka。

首先,你需要在Spark项目中添加Spark Streaming Kafka的依赖。在Maven项目中,可以在pom.xml文件中添加以下依赖:

<dependency>     <groupId>org.apache.spark</groupId>     <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>     <version>3.0.2</version> </dependency> 

然后,你可以使用SparkSession对象创建一个StreamingContext,并指定批处理的时间间隔:

import org.apache.spark.SparkConf; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.api.java.JavaInputDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; import org.apache.spark.streaming.kafka010.KafkaUtils; import org.apache.kafka.common.serialization.StringDeserializer;  public class KafkaStreamingExample {     public static void main(String[] args) throws InterruptedException {         // 创建SparkConf对象         SparkConf sparkConf = new SparkConf().setAppName("KafkaStreamingExample").setMaster("local[*]");          // 创建JavaStreamingContext对象         JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));          // 设置Kafka参数         Map<String, Object> kafkaParams = new HashMap<>();         kafkaParams.put("bootstrap.servers", "localhost:9092");         kafkaParams.put("key.deserializer", StringDeserializer.class);         kafkaParams.put("value.deserializer", StringDeserializer.class);         kafkaParams.put("group.id", "test-group");          // 创建Kafka主题列表         Collection<String> topics = Arrays.asList("topic1", "topic2");          // 创建Kafka输入流         JavaInputDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(                 streamingContext,                 LocationStrategies.PreferConsistent(),                 ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)         );          // 处理Kafka数据         kafkaStream.foreachRDD(rdd -> {             // 在这里对每个RDD进行处理             rdd.foreach(record -> {                 System.out.println("Key: " + record.key() + ", Value: " + record.value());             });         });          // 启动流处理程序         streamingContext.start();          // 等待流处理程序终止         streamingContext.awaitTermination();     } } 

在上面的示例中,我们首先创建了一个SparkConf对象和一个JavaStreamingContext对象。然后,我们设置了Kafka的参数,包括Kafka的服务器地址、key和value的反序列化类以及消费者组ID。接下来,我们创建了一个Kafka输入流,并指定要订阅的主题和Kafka参数。最后,我们使用foreachRDD方法对每个RDD进行处理,并从中获取每条记录的键和值。

请注意,上述示例中的createDirectStream方法适用于Kafka 0.10版本及更高版本。如果你使用的是旧版本的Kafka,可以使用createDirectStream方法的另一个重载版本。此外,还可以根据需要调整示例中的其他参数和处理逻辑。

广告一刻

为您即时展示最新活动产品广告消息,让您随时掌握产品活动新动态!